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the inner ring angles and staggering the methylene groups. All 
four of the molecules studied in this work have similar angle strain, 
but the higher values for ax, for II and IV (Table II), which have 
two oxygen atoms in their rings, do reflect the higher angle strain 
at oxygen atoms as compared to carbon. These molecules also 
have different numbers of eclipsing CH2 groups. 3,4-Dihydropyran 
(I) has two pairs of adjacent CH2 groups; 3,6-dihydropyran (III) 
and 1,4-dioxene (II) each have one pair; and 1,3-dioxene (IV) 
has no adjacent CH2 groups. As a result, IV has a barrier to 
planarity that is 600 cm"1 lower in energy than the other three 
molecules. Somewhat surprisingly, the extra pair of adjacent CH2 

groups does not increase the barrier to planarity for I relative to 
II or III. In fact, all three molecules have similar barriers to 
planarity. 

Although these potential energy surfaces fit the data well, small 
improvements could be realized by including other interacting 
vibrations. In particular, the out-of-plane double-bond twist (DB 
twist), which was neglected, no doubt couples somewhat with the 
single-bond ring-twisting mode. Weaker series of bending and 
twisting bands originating in the excited states of the DB twist 
have been assigned for 3,6-dihydropyran and 1,3-dioxene by 
DKSW, and these demonstrate a small amount of interaction with 
this mode. Inclusion of the DB twist in the calculations could 
improve the potential energy surface and slightly lower the cal­
culated barriers to interconversion between the two twisted con­
formations. However, a three-dimensional potential surface 
calculation would be required if the DB twist were included, and 
the magnitude of the problem would become unmanageable. Only 
in one highly symmetric case7 (1,3-disilacyclobutane) has a 

1. Introduction and Concepts 
It has become customary to discuss electron density distributions 

in molecules and crystals in terms of difference densities defined 
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three-dimensional potential surface been successfully determined. 

Conclusions 

Although LRU's published potential energy surfaces give 
reasonable values for barriers to interconversion for I and II, their 
central barriers are too high and they predict the presence of stable 
bent conformations which have not been observed in the infrared 
and microwave spectra. In this work we have determined improved 
potential energy surfaces for the oxygen analogues of cyclohexene. 
Each of these has energy minima corresponding to the twisted 
conformations. The bent conformations are at saddle points on 
the surfaces and are not energetically stable. The barriers to 
planarity and the twist angles of the lowest energy structures 
determined here are somewhat higher than those determined from 
MM2 and microwave studies but are in much better agreement 
than the previous vibrational investigations. The potential energy 
surfaces are well defined by vibrational data at lower energies but 
are more poorly determined in the region of the central barrier. 
Thus, while we are confident that the barriers reported here are 
considerably better than those of LRU or DKSW, they are not 
determined with the same confidence as barriers for four- and 
five-membered ring molecules.1"4 Nonetheless, the results of this 
work, when viewed together with the NMR and microwave results, 
help provide a coherent picture of the conformational energy 
differences for these four molecules. 
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with respect to reference densities of "promolecules". Conven­
tionally these are chosen as superpositions of spherically averaged 
(and thermally smeared) densities of free atoms placed at optimal 
positions. We shall call such difference densities total difference 
densities (TDDs). By contrast, we propose here that not only the 
positions but also the orientations of the nonspherical multipolar 
electron densities of the atoms in their ground states be optimized 
when forming reference densities. The resulting difference den­
sities are denoted as chemical deformation densities (CDDs). 

In this first section the fundamental considerations are outlined. 
In the second section the mathematical definition of CDDs and 
an algorithm for their numerical determination are presented. In 
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Abstract: Molecular electron densities are often examined in the form of difference densities (DDs). Conventionally they 
are defined with respect to the superimposed densities of the spherically averaged atoms. These DDs are denoted here as 
total difference densities (TDDs). They are particularly useful for the discussion of the electrostatic fields created by molecules 
in the space around them. However, only atoms with spatially nondegenerate ground states are of necessity spherically symmetric. 
Most atoms with open p and d shells are not, and consequently their TDDs are often dominated by quadrupolar density distributions 
which are the result of the orientation of the undeformed atomic ground states. These orientational effects can be quite large 
and hide the genuine atomic deformations that are associated with molecule formation. Because of the superposition of the 
atomic orientation and chemical deformation effects, it is intrinsically difficult to compare TDDs of different systems, and 
the term "deformation densities" for them seems unfortunate. As a more appropriate quantity for the elucidation of the nature 
of chemical binding, chemical deformation densities (CDDs) are defined here with respect to the reference density of a promolecule 
whose unperturbed atoms, in addition to being positioned at their correct places in the molecule, have their ground-state multipoles 
uniquely oriented. This procedure is also a natural one from an information theoretical point of view. An unambiguous algorithm 
is formulated for the determination of the atomic orientation parameters and for the construction of CDDs from given molecular 
electron densities. An algorithm for the evaluation of orientation parameters from X-ray scattering data is presented elsewhere. 
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the subsequent paper1 the new approach will be applied to the 
theoretically calculated densities of some two to five atomic 
molecules, and the resulting CDD maps will be analyzed. 

1. Total Difference Density and Chemical Difference Density. 
Since the early 19th century chemists believed that chemical bonds 
are caused by interatomic forces that arise from electric charges.2"8 

During the past two decades considerable efforts have been made 
to determine accurately electronic charge distributions in molecules 
and solids, both experimentally and theoretically,9"13 to gain a 
deeper understanding of chemical bonding and chemical reactivity. 

A significant fraction of the intermodular interactions is due 
to electrostatic forces between essentially unperturbed molecules. 
These contributions are important, e.g., for the packing order of 
molecular crystals and adsorbates, for the structure of polar liquids, 
and for hard acid-hard base reactivities. The effective electrostatic 
field outside a molecule (i.e., where its density is practically 
vanishing due to exponential decay) is determined by the total 
electron density inside the molecules, or equivalently by the total 
difference density TDD (since the subtracted superposition of 
spherical, neutral atoms does not create any electrostatic multipole 
field in the region outside the molecular density distribution). 

In principle, the total electron density also uniquely determines 
the intramolecular total energy (Hohenberg-Kohn-Sham theo­
rem14,15)- Unfortunately, no simple and robust energy functional 
of the diagonal one-electron density is as yet known with chemical 
accuracy, although significant progress has been made during the 
past decades.15"20 Therefore, rather than following this approach 
literally, attempts have been made to relate bonding energies 
and/or forces between the atoms in a molecule to the density 
difference between the actual molecule and a constructed spherical 
"promolecule"21 (the so-called "independent spherical atom 
moder1 ' ,22). An alternative approach uses the second derivatives 
of the molecular density.23"25 

In this context it has often been stated that the presence of 
density accumulations at bond centers (i.e., maxima in the dif­
ference density map, or minima in the Laplacian of the density) 
are indicative of covalent bonding.6,22"28 Indeed, many compounds 
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consisting of first- and second-row atoms with nondegenerate 
ground states (H, Li, Be, N) or with highly symmetric valence 
states (C(sp3)) show difference densities, which conform to these 
traditional ideas.9"11 They show large positive difference density 
values, i.e., electron density accumulations, at the centers of strong 
covalent bonds. Longitudinal and transversal shifts of such "bond 
charges" imply polar and bent bonds, respectively. Charge ac­
cumulations "behind" the atoms may be taken as indications of 
lone pairs. Typical values for the maxima of bond and lone-pair 
difference densities in such molecules are of the order of + ' / 2 e/A3. 

Recently however, critical observations have been published 
regarding this view.25,29-33 For example, in compounds with 
asymmetrically coordinated second-row atoms, which have open 
p shells and degenerate P ground states (in particular B, O, or 
F), difference densities often have completely different appear­
ances. They exhibit density depressions as large as -3 e/A3 in 
the bond regions and at the anticipated lone-pair positions.9"13,34"37 

These unexpected findings have led to the consideration of a special 
type of covalent bond typical for electron-rich molecules (as, e.g., 
F2 or H2O2), where the bonding interactions share certain 
characteristics of typical closed-shell repulsions such as between 
two argon atoms.23,28 Although such repulsions certainly exist 
for the nonbonded lone pairs of O and F, it would seem that the 
existence of a conventional covalent bond in addition to the 
nonbonded repulsions is nonetheless a useful concept for the in­
tuitive understanding of the chemistry of such molecules. We 
would prefer to sharpen rather than to eliminate qualitative 
concepts which have proven useful up to now. 

The just-mentioned unexpected density features can in fact be 
readily understood30"34 by taking into account that these difference 
densities are defined with respect to spherically averaged atomic 
densities. The large negative difference density values simply 
reflect the fact that, even when free, atoms in degenerate ground 
states may have nonspherical quadrupolar or higher multipolar 
electron density distributions. Already at "zeroth order of 
perturbation", i.e., at very large distances where chemical energetic 
interactions are practically nonexistent, the very weak long-range 
influence of other atoms have an orienting effect on an essentially 
free atom with a degenerate ground state. Completely free atoms 
may be prepared either as oriented pure states or as spherically 
averaged mixed states. Therefore it is equally reasonable to choose 
the reference density for such atoms as nonspherical (see, e.g., 
ref 26, 29, 38) with appropriately oriented quadrupolar ground-
state densities.33 This orientation of the ground-state atoms can 
have a much larger impact on the density than those density 
deformations that result from the bonding interactions. We also 
note that the electrostatic interaction of superimposed oriented 
undeformed atoms usually contributes a substantial fraction of 
the bond energy.32 

We denote the difference densities obtained with the oriented 
nonspherical atomic reference densities as chemical deformation 
densities (CDDs). It is found1 that they do not exhibit the ap-
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parent "anomalies" for the TDDs in the cases of electron-rich 
atoms of the second row with open p shells (N, O, or F). The 
orientation of open d shells in transition-metal compounds has 
already attracted attention (see, e.g., Coppens39). The orientation 
of open p shells of second- and higher-row main-group elements 
is even more important. 

In light of these observations, the arbitrary choice of spherically 
symmetric atomic ground-state ensembles as reference densities, 
while useful for the analysis of intermolecular interactions and 
for the standardization of difference maps, seems inappropriate 
for the analysis of chemical interactions inside a molecule. Only 
if the atoms have nondegenerate spherical ground-states, i.e., when 
the TDD coincides with the CDD, does it represent the chemical 
deformation effects of the free atoms. In other cases, the total 
difference density (TDD) is dominated by the zeroth-order ori­
entation of the atomic quadrupolar ground states. The conven­
tional ("standard"30) total difference densities thus embody two 
different effects, namely, (i) large orientation effects found in 
nonspherical atoms with degenerate or quasidegenerate ground 
states. These orientation effects already come about by arbitrarily 
small interactions without any intraatomic energy changes. While 
often a considerable contribution to the bond energy is ascribable 
to the electrostatic interaction of these superimposed oriented 
ground-state atoms,32 the magnitude of the orientation is not a 
measure of the magnitude of these interactions, (ii) Smaller 
chemical deformation effects which accompany the chemical 
interactions. Although these deformations are associated with 
"energetic promotions" of the individual atoms, the concomitant 
interatomic bonding effects stabilize the molecule slightly. It seems 
therefore inappropriate to call the total difference density a 
"deformation" density".10-12 

It is apparent that we disagree with the view that the total 
difference density, based on spherical reference atoms, adequately 
describes the low symmetry of atoms when they become part of 
a molecule.35 It is certainly true that the TDD clearly exhibits 
the deviation of the molecular density around each atom from 
spherical symmetry and thereby provides a basis for understanding 
the multipolar interatomic Coulombic interactions. However, the 
cornerstone of our position is the observation that, nearly always, 
the dominant contributions to these nonsphericities result from 
intraatomically isoenergetic orientations of atoms with degenerate 
ground-state wave functions. Only a small fraction of the non-
sphericity is due to the additional deformations that are associated 
with energy-stabilizing bonding interactions. These deformations 
are exhibited by our chemical deformation density. It seems to 
us that the TDD alone is a rather unwieldly tool for examining 
the details of and distinguishing the various contributions to the 
bond-forming energy changes. 

There exist many different possibilities to define useful DDs. 
As Lipscomb52 stated, no single choice can be expected to appeal 
to all theorists and experimentalists. Some choices are most 
appropriate for specific interpretational purposes, others (e.g., the 
TDD) are more convenient from the technical point of view of 
easy determination (structure analysis using the standard spherical 
atomic form factors) and data communication. 

2. Information Processing and Data Compactation. The 
standard procedure of extracting the information contained in the 
total electron density distribution consists of two parts. First, the 
molecular structure and the thermal motions are presented in terms 
of positional and thermal parameter values. Second, the remaining 
total difference density which, as we have seen, embodies isoen­
ergetic orientations as well as promotional deformations of the 
atoms, is displayed by a distribution function in space. Since the 
positions, the vibrational amplitudes, the orientations, and the 
deformations of the atoms are all consequences of the chemical 
interactions, this particular division into parametric and non-
parametric information is arbitrary. 

The original X-ray scattering data sets are voluminous. Fourier 
transformation yields total electron density distributions that are 

(39) Holladay, A.; Leung, P.; Coppens, P. Acta. Crystallogr., Sect. A 1983, 
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represented by similarly voluminous data sets. Measured by the 
number of bits needed for storage, the amount of information 
appears to be very large. However, the total scattering or density 
data are in fact highly redundant, and the physically interesting 
amount of information is much smaller. This is so because the 
possible data sets stem from a rather limited family of data sets: 
Any observed set corresponds to a density distribution, which must 
be similar to the superposition of known atomic quadrupolar 
densities (see i below), placed at typical distances (see ii below), 
smeared vibrationally (see iii below), oriented toward the nearest 
neighbors (see iv below), and deformed slightly by intramolecular, 
and eventually by intermolecular interactions (see v below). 

Indeed, it is just the restriction to such density distributions 
that forms the basis for the "direct methods" of structure de­
termination and for the extraction of phase information from 
intensity data.40,41 It is the atomic composition of matter and 
the ensuing redundancy of the measured data that make the phase 
problem solvable. 

To make the considerations quantitative, let us assume that we 
have measured about 104 reflections. Each reflection is specified 
by three independent angles and an intensity. An accuracy of 
the angles of 103 = 210 corresponds to 10 bits per value. A relative 
accuracy of the intensities of the order of a percent corresponds 
to 6-7 bits for the mantissa. Since the intensity range extends 
over, say, 6 orders of magnitude, we need 4-5 bits to represent 
the binary exponent G [0,20]. It follows that the total information 
amounts to a about 5 X l O 5 bits. 

Fourier transformation yields the electron density distribution 
in the unit cell. With a spatial resolution of ' /4 A there are about 
6 X 104 grid points in a unit cell of 10 A. Typically, densities 
are obtained with an accuracy of a few percent, corresponding 
to about 5 bits per mantissa. The measurable density values spread 
over a range of, say, 5 decades, corresponding to 4-5 bits for the 
exponents. Hence the total information contents in the density 
distribution function amounts to about 5 X 105 bits. Thus, the 
Fourier transformation of the scattering data has not changed the 
amount of formal information—as it should be. Of course, this 
does not contradict the fact that by interpolation on a finer grid, 
details like density maxima, which are only implicitly given by 
the data on the coarse grid, can be represented explicitly. Namely, 
by increasing the number of grid points, it is easily possible to 
arbitrarily increase the number of bits, which are needed to store 
the density file, above the minimal number. 

What physical knowledge can we gain from this formal in­
formation? 

(i) For each atom in the unit cell (say, about 50 atoms) we 
obtain the nuclear charge, each Z G [1,100] corresponding to 
about 7 bits. 

(ii) The Cartesian coordinates are obtained with a typical 
accuracy of a few 10~3 A, corresponding to 12 bits for each 
dimension of about 10-A extension, (i) and (ii) amount to about 
(3 X 12 + 7) X 50 = 2 x 103 bits. 

(iii) The atoms undergo vibrations. The harmonic vibrational 
tensors with a few percent accuracy for each of the 6 components 
(and eventually anharmonic corrections) comprise about 40 bits 
for each atom, which amounts to another total of about 2 X 103 

bits. 
(iv) Some of the atoms have open p or d shells, which should 

be appropriately populated and oriented. For orbital angular 
momentum /, we need 1(21 + 3) parameters (see below) which, 
if determined with several percent accuracy, add up to a few 103 

bits. 
(v) Finally we can extract additional parameters that describe 

the chemical deformation, namely, spatial expansions or con­
tractions of atomic valence shells or subshells (so-called K pa­
rameters), charges on atoms, and possibly additional multipole 
contributions of different strengths, directions, and spatial ex­
tensions. This type of density modeling is actually performed in 
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the multipole expansion approach (see, e.g., refs 9-11, 38, 43). 
The respective information corresponds to up to several 103 bits 
for the whole unit cell. 

Consequently, the formal information contents of a density 
distribution (more than 105 bits) is by more than 1 order of 
magnitude larger than the physical information contents (less than 
104 bits). Thus, as is not uncommon for original data sets, there 
is a large information defect or so-called "missing surprisal" in 
the scattering or density data. As already mentioned, this is due 
to the fact that only very special density distribution functions 
appear in nature. 

By stepwise extraction of the various mentioned types of physical 
information, each of the order of a few 103 bits, both the range 
of magnitudes and the relative accuracies of the remaining dif­
ference densities or difference scattering amplitudes are reduced. 
For instance, upon subtracting the vibrating spherical atom 
promolecule density from the total molecular density, the resulting 
TDD values become so small that 5 bits for each value are suf­
ficient instead of the 10 bits for the total density values. 

Each of the four steps of data compaction, i.e., the determination 
of the structural parameters (i and ii), the thermal smearing (iii), 
the atomic orientations (iv), and the genuine ehemical deforma­
tions of the atoms (v), reduces the formal amount of information 
of 5 X 105 bits by about one-quarter. In each step, about 10s bits 
of formal information are converted into a few i03 bits of 
physically relevant information. 

If the accuracy and the number of the original data are less 
than assumed above, then the amount of formal information may 
already be exhausted after two or three steps of the data com-
pactation process. The four kinds of physical information about 
the system, which can be extracted from X-ray scattering or 
electron density data, are hierarchically ordered in the sense that 
they correspond to different levels of accuracy of the original data. 
It therefore seems logical to perform as many of these steps as 
possible to eliminate the redundancy of the density distribution 
function and to represent the measured information as compactly 
as possible in the form of parameter sets that embody meaningful 
and clear physical interpretations. 

Traditionally, only the first two data compactation steps are 
performed. That is, one obtains the structural and thermal pa­
rameters, which can be discussed quantitatively. The remaining 
types of physical information, i.e., the atomic orientations and the 
chemical deformations, are usually not distinguished from each 
other, neither in the analysis nor in the discussion of the densities. 
Atomic orientations and chemical deformations are being rep­
resented combined together, in the form of multipole deformation 
parameters, or even in the redundant qualitative form of TDD 
maps. In those cases where orientation effects dominate, the 
chemical deformation features become buried and masked. Total 
difference density maps of different molecules, in which the atoms 
undergo different orientations, can therefore not be compared with 
regard to the chemical deformation effects. 

3. Present Approach. The concept that molecules consist of 
atoms is "only" a model. However, it has proven eminently useful 
in the field of chemistry, both theoretically and practically. If 
we accept this model, then we have also to accept (i) that a major 
contribution to the binding energy can already be recovered by 
the superposition of undeformed atomic charge distributions, (ii) 
that atomic ground states may be spherical as well as nonspherical, 
and (iii) that the total molecular density deviates only slightly 
from the superposition of undeformed, nonspherical oriented 
atomic ground states. The goal of representing the molecular 
density information in terms of structural, thermal, orientational, 
and deformational parameters is therefore not arbitrary but is 
in fact appropriate to the chemical concept of atoms in molecules. 
These considerations confirm our opinion that it should be fruitful 
to split the total difference density (TDD) into two parts,33 namely, 
(i) the orientation effects which do not involve intrazXomic energy 
changes but arrange the atomic electrons for optimal interaction 
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and (ii) the smaller "chemical" deformation effects which reflect 
the results of the chemical interactions on the atomic densities. 
Both types of information can then be separately quantified. 

The idea of oriented atomic ground states is not new (compare 
ref 12, 26, 29, 30, 31). Specific orientations have been proposed 
by using intuitive reasoning based on the VB approximation or 
other models (we will call those DDs the "naive" ones). For very 
simple cases the chemical deformation densities have been ex­
amined in different contexts by Hall, Parr, Ruedenberg, Schwarz, 
and co-workers.29'33,42 However, what is missing so far is an 
unambiguous, general operational definition of orientational 
parameters, which play a role similar to that of the positional and 
thermal parameters used in conventional X-ray structure re­
finements. Such a definition of orientational parameters and of 
genuine chemical deformations is formulated below. The approach 
will be carried through for molecules where the atomic orientations 
cannot be guessed at by symmetry, and numerical values will be 
obtained for the parameters describing the orientations. The 
chemical deformation effects will still be left in the form of a 
graphical CDD distribution. In cases of limited experimental 
accuracy that is insufficient to determine the small chemical 
deformations, the determination of the orientation parameters of 
the degenerate atomic ground states in the molecule may still be 
possible. As has been stressed by Hirshfeld,43 accurate structural 
parameters can be obtained only if electron density parameters 
are adjusted simultaneously. The present approach assumes that 
the total molecular density is given. Theoretical, quantum 
chemical ab initio densities are analyzed here, but by the same 
formalism, one could also analyze densities derived experimentally. 
An alternative approach, which is based on the direct evaluation 
of original X-ray scattering data, will be described elsewhere.51 

In the conventional data compactation process of X-ray scat­
tering measurements two types of physical information, namely, 
the atomic coordinates and the vibrational amplitudes, are ob­
tained by successively reducing the scattering difference amplitude 
values through least-squares techniques. We proceed in the same 
manner in the case of the orientation parameters. If pM is the 
electron density distribution of the molecule or crystal and 
2IAPA(^A) ' s the superposition of the (thermally smeared and) 
oriented atomic ground-state densities with parameters sA, then 
we define the chemical deformation density by 

M 

ApM(*A) = pM - 2ZPA(SA) (1) 
A 

where the sum runs over all atoms A in the molecule M. ApM 

depends on the positional, thermal, and orientational parameters 
sA of the atoms. To transfer as much information as possible from 
the three-dimensional distribution function pM into the parameters 
sA, we determine the optimal parameters sA of the atom A in the 
molecule M by minimizing the integrated square of the residual 
chemical difference density: 

— f dr> |ApM(sA)|2 = 0 for sA = sA (2) 
dsA,J 

The minimized chemical difference density ApM(sA) then describes 
the "truly" chemical polarizations and deformations of the atoms 
A in the molecule M. 

An approach that is in some respects similar to ours has been 
proposed and applied many years ago by Dawson,44 Coppens,45 

and others. There is however an essential difference: These 
authors model the total electron density by a superposition of 
products of atomic orbitals. Their aim was to represent pM op­
timally, thereby accounting simultaneously for both the orien­
tations and the chemical deformations of the atomic ground states 
in a molecule or crystal. To this end, variable s2, p2, and s-p hybrid 

(44) Dawson, B. Acta Crystailogr. 1964, 17, 990, 997. 
(45) Coppens, P.; Willoughby, T. V.; Csonka, L. N. Acta Crystailogr., 

Sect. A 1971, 27, 248. Coppens, P.; Pautler, D.; Griffin, J. F. J. Am. Chem. 
Soc. 1971, 93, 1051. Matthews, D. A.; Stucky, G. D.; Coppens, P. J. Am. 
Chem. Soc. 1972, 94, 8001. Jones, D. S.; Pautler, D.; Coppens, P. Acta 
Crvstallogr., Sect. A 1972, 28, 635. 
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densities, two-center densities, etc., were used, and a large number 
of parameters was introduced, which turned out to be highly 
correlated. 

Our aim is different. We want to define and determine the 
orientations and the deformations separately. Since there are 
only a few orientational parameters and since they are expected 
to be only weakly dependent on each other or on the thermal 
parameters, intensity, or density, data of medium accuracy should 
already be sufficient for their determination. The mathematical 
and conceptual implementation of this objective is the subject of 
the next section. 

2. Orientation of an Atom in a Molecule 
1. Atomic Densities. To a first approximation, a polyatomic 

system is composed of atoms in their ground states. The corre­
sponding atomic electron density pA(r) is uniquely defined, if the 
wave function ^ A is (spatially) nondegenerate like that of H(2S), 
Li(2S), Be(1S), or N(4S). However, many atoms have N-Md 
spatially degenerate ground states, for instance, B(2P), C(3P), 
6(3P), or F(2P) with N = 3. In these cases the most general 
description of the atomic ground-state contribution in a molecule 
is given by a mixed ensemble density operator J*\ The quantitative 
values of the matrix elements representing this operator embody 
what we have loosely called the atomic "orientation". 

To quantify our approach, it is necessary to define exactly what 
is meant by the "ground state" in the present context. Strictly 
speaking, the atomic states are only nearly degenerate because 
of the splitting into spin-orbit components. However, the 
2P!/2_2P3/2 splittings of B or F are negligible in comparison to 
chemical interaction energies. This is of course no longer the case 
for the heaviest homologues (Tl and I, respectively) with spin-orbit 
splittings of the order of 1 eV. In such cases the question of which 
states should be included in the nearly degenerate ground-state 
ensemble has to be carefully examined. 

If we include different spin-orbit components, then it may also 
be reasonable to include different L-S components of a given 
configuration in the ground-state ensemble (sometimes called the 
average level ensemble). For instance, if one wants the density 
operator PA to be flexible enough to describe p^, py, pr orbital 
occupancies between zero and two in carbon (or oxygen) atoms, 
1D and/or 1S states of the ground configuration s2p2 (or s2p4, 
respectively) must be included in the ensemble, in addition to the 
3P ground state. Nitrogen has a spherical s2p3 4S ground state 
but is strongly quadrupolar in several compounds corresponding 
to the population of 2P or 2D states. However, the (diagonal) 
one-electron density does not uniquely determine the many-electron 
states to be included in the ensemble. For instance, a density that 
can be obtained from a p2 3P state alone can also be reproduced 
by a mixture of other p2 states. 

In the case of a transition metal, lanthanoid, or actinoid atom, 
nd-(n + l)s or nf-(n + l)dpromotion, respectively, does not cost 
more energy than the spin-orbit splitting or the L-S separation. 
It causes, however, large charge redistributions, which should be 
easily measurable. In these cases, it would seem appropriate to 
include even different configurations (orbital occupation schemes) 
in the ground ensemble. 

By contrast, ns-np promotion within a shell is usually ener­
getically more expensive, but it results in smaller density changes. 
The density changes are especially small in the second row (B to 
F), where the positions of the density maxima of the 2s and 2p 
shells differ by only a few percent (see, e.g., ref 45, 46). Con­
sequently s-p hybridization in second-row molecules is very dif­
ficult to determine by density measurements. To avoid spurious 
results, one should probably not try to account for 2s-2p promotion 
with the presently available accuracy of experimental density data. 

In the case of strongly polar or ionic compounds it may be more 
sensible to consider ionic configurations in the reference ensemble. 
There may exist even other cases. There exists no universally valid 
collection of states for inclusion in the atomic "quasi-ground-state" 
reference ensembles. One should include those atomic states that, 

(46) Smith, C. M.; Hall, G. G. Int. J. Quantum Chem. 1987, 31, 685. 

on one hand, are low in energy in comparison to the bond energy 
and, on the other hand, turn out to contribute significantly to the 
"orientational fine structure" of the density of a given molecule, 
say Ap contributions of the order of several e/A3. By contrast, 
"chemical hyperfine structures" of the density of no more than 
a few 0.1 e/A3, in particular when requiring highly promoted 
atomic states for their representation, should be accounted for 
by the residual chemical deformation density. 

In a certain sense chemistry is a classification science,47 and 
there exist many situations where the most useful classification 
scheme is not clearcut and, certainly, is not known in advance. 
In such cases it must be deduced by a detailed analysis of the given 
data. Which states ought to be included in the atomic reference 
ensemble will then be an additional result of the density analysis. 
In this manner one can extract from the experimentally or the­
oretically determined total electron density both qualitative in­
formation regarding the low-lying atomic states which are dom-
inantly important for the molecular density and quantitative 
information regarding the populations and orientations of these 
degenerate or near-degenerate states. We stress again that the 
aim of interpreting densities is not the optimal reproduction of 
given molecular densities, but its splitting up into physically 
meaningful contributions. It is our premise that the biggest 
contribution is given by the superposition of the oriented atomic 
ground ensemble densities. A smaller density contribution, CDD, 
is then due to energetically expensive perturbations of the atoms 
occurring during bond formation, which do not necessarily result 
in significant changes of the one-electron density. 

2. Density Matrix for Open-p-Shell Atoms. Let the N states 
of atom A included in its ground ensemble be described by 
many-electron wave functions ^ . The many-electron-state 
density operator of this atomic ensemble is given by 

/>A - £ | * A )P A <* A | (3) 

•j 

The density matrix PA fulfills the following three conditions: 

hermiticity PA = P;
A+ (4a) 

normalization tr (PA) = 1 (4b) 

representability 0 «S flA < 1 (4c) 

where fiA are the eigenvalues of PA. At the orbital level eq 4c 
reduces to the original simple form of the Pauli principle. We 
note that the constraint (4c) is much less restrictive than that 
proposed by Massa et al.48 

A simple way49 to account for eq 4b and 4c is the following 
representation of the eigenvalues in terms of JV - 1 hyperspherical 
angles a(: 

flA = cos2 ax 

fiA = sin2 Of1 cos2 a2 

QA = sin2 (X1 sin2 a2 cos2 a3 etc. 

fi^ = sin2 a, sin2 a2 ... sin2 aN-x (4d) 

In general the atomic density matrix PA is neither necessarily 
diagonal nor idempotent (PA-PA ^ PA), except in the case of a 
single pure state. The PA matrix can be expressed as 

pA = vA.fiA.VAt (5) 

where fiA is the diagonal matrix of the eigenvalues fiA, and VA 

is a unitary matrix which may be expressed in terms of an an-
tihermitean matrix YA: 

(47) Primas, H. Chemistry, Quantum Mechanics and Euctionism; 
Springer: Berlin, 1981. 

(48) Massa, L.; Goldberg, M.; Frishberg, C; Boehme, R.; LaPlaca, S. 
Phys. Rev. Lett. 1985, 55, 6, 622, and references given therein. Frishberg, 
C. Int. J. Quantum Chem. 1986, 30, 1. 

(49) Hoffman, D. K.; Raffenetti, R. C; Ruedenberg, K. J. Math. Phys. 
1972, 13, 528. 
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VA = exp(YA) (6) 

The state-density operator PA determines the one-electron-
density operator pA uniquely, whereas the inverse is in general 
not true. In an orbital basis ipf the general expression for pA reads 

P A = Z\«t)p*,(<ffi\ (7) 

The atomic electron density is then given by the trace 

pA(r) = tr (pA) = Ztf(r)-pA-tf'(r) (8) 

For the sake of simplicity, we may assume without loss of gen­
erality that the basis orbitals are real. 

Let us now introduce the symmetry adapted SCF53 or 
FORS-MCSCF54 approximation to the ground state of main-
group atoms, which restricts the form of the ^ s in eq 3 without 
modifying eq 4. The finite orbital basis of atom A consists of the 
core orbitals c* = c*{r) and of the s and p valence orbitals sA = 
sA(r), pf = pf(r) (i = x, y, z). pA(r) is then simply given by 

p\r) = zwf-^y + wA-(sAy + Uptfpf-pf (9) 

Wf = 2 and Wf are the occupation numbers of the core and 
s-valence orbitals. Since the degenerate ground states with an 
open p shell are of P type and since, therefore, TV in eq 3 is equal 
to n in eq 9 (n = N = 3), there exist unique and simple relations 
between the Pfj for these states and the pfj for the orbitals at the 
symmetry-restricted Hartree-Fock level. They are for boron, 
aluminum, ... (p1 2P) 

pfj = Pf1 = a„/3 + dPfj (1Oa) 

for carbon, silicon, ... (p2 3P) 

pfj ^S1J-PfJ = 25^3-dPfj (1Ob) 

for nitrogen, phosphorus, ... (p3 4S) 

pN = S„ (1Oc) 

for oxygen, sulfur, ... (p4 3P) 

po = d.J + Fo = 4 5 y / 3 + dFo ( 1 0 d ) 

for fluorine, chlorine, ... (p5 2P) 

Pl = 2d,j-Pl = 58^/3-dPl (1Oe) 

where dPf- is the deviation of Pfj from the statistical average, i.e., 
tr (dPA) = 0. Consequently, in the Hartree-Fock approximation, 
pA (given in a space-orbital basis) is a herrhitean matrix with its 
eigenvalues Wf restricted as follows: 

group III: ZWf = 1; 0 < Wf < 1 (for 2P) 

group IV: ZWf = 2; 0 « Wf < 1 (for 3P) 

group V: ZWf = 3; Wf = 1 (for 4S) 

group VI: ZWf = 4; 1 « Wf « 2 (for 3P) 

group VII: ZWf = 5; 1 < Wf « 2 (for 2P) (11) 

If all states of the same configuration or if states of some other 
configurations, e.g., of ionic configurations, are included in the 

(50) Rollett, J. S. In Computational Crystallography; Sayre, D., D., Ed.; 
Clarendon: Oxford, 1982; p 338. Rollett, J. S. In Methods and Applications 
in Crystallographic Computing; Hall, S. R., Ashida, T., Eds.; Clarendon: 
Oxford, 1984; p 161. Diamond, R. Ibid., p 174. 

(51) Ruedenberg, K.; Schwarz, W. H. E. Acta Crystallogr., Sect. A, to 
be submitted. 

(52) Lipscomb, W. N. Trans. Am. Cryst. Assoc. 1972, 8, 79. 
(53) Roothaan, C. C. C. Rev. Mod. Phys. 1960, 32, 179. 
(54) Ruedenberg, K.; Schmidt, M. W.; Gilbert, M. M.; Elbert, S. T. Chem. 

Phys. 1982, 7/, 41. 

ensemble of eq 3, then the restraints on the orbital occupations 
become less stringent. This also holds in those cases of open d 
shells where the L value of the ground state is larger than / (i.e., 
L > 2). The most general restriction is of course 

0 < Wf «5 2 (12) 

In this context it should be mentioned that the idempotency 
constraint48 is not a reasonable assumption for the atomic reference 
densities pA since it presumes that each of them can be derived 
from a single-determinant wave function whereas, in fact, pA 

necessarily represents the density of an ensemble of atomic 
pure-state wave functions. Within the context of a molecular wave 
function, an atom can almost never be modeled by one pure-state 
atomic wave function, be it single or many determinantal, but only 
by an ensemble. (It may also be noted that idempotency would 
apply only in the spin-orbital basis and that there are infinitely 
many single determinants that yield the same electron density,55 

i.e., density matrix trace.) 
Writing in analogy to eq 5 for pA 

pA = uA-WA-UAt (5a) 

we can express the atomic one-electron density of an open p shell 
in the form 

PA(r) = E2(cA)2 + 2(sA)2 + E WAUfkUf;Pfpf (13) 
c IJk 

The Wfi are restricted by eq 11, by eq 12, or by alternative 
equations, corresponding to eq 4c.51 The unitary orbital trans­
formation matrices Ufk can be represented by an equation anal­
ogous to eq 6: 

UA = exp(XA) (6a) 

The columns of U represent the coefficients of the "natural local 
atomic p orbitals" pk of atom A in the molecule and determine 
their directions. The Wf are the corresponding occupation 
numbers: 

p\r) = Z2(cA)2 + 2(sA)2 + ZWfipfY 
c k 

(14) 

Since we attempt only to generate the real trace p(r) of the 
density operator p with kernel p(r,r') and density matrix py, the 
imaginary part of p,-j remains undetermined. The most natural 
choice is to set the 1(21 + 1) parameters of Im (p) equal to zero 
so that p and U become real. (Another choice of Im (p), favored 
by Massa et al.,48 yields the idempotency.) In the case of p orbitals, 
the real orthogonal matrix U contains three real independent 
parameters which specify the rotation of the set of the three natural 
p AOs in real space, all of which have the same shape. This is 
no longer so for / > 1. In the general case of an open / shell, the 
real matrix U contains 1(21 + 1) degrees of freedom. For instance, 
for a d shell with / = 2, U has 10 independent parameters, three 
of which can be used to determine the directions of the main axes 
and seven to determine the shapes of the five natural d orbitals. 

3. Equations for the Atomic Density Contributions. We in­
troduce the notation 

M M 

8™(r) = pM - Z2(cA)1 - ZWA(sA)2 (15) 
A,c A 

V0 = Jd / - 3 («M)* (16) 

hA= j'dr'pf&fpf- (17) 

4„B„= fdSpfpfplp* (18) 

S^(r) is that part of the molecular density that is not due to 
spherically symmetric contributions of occupied (frozen) atomic 
shells. The hA are one-electron two-index integrals over atomic 
open-shell orbitals, in our case p AOs. If Af0 is the number of 

(55) Harriman, J. E. Phys. Rev. A 1981, 24, 680. 
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atoms with an open shell of angular momentum I (n = 21 + 1), 
there are M0n(n + l ) /2 different integrals (taking no account of 
any molecular symmetry). The gf)*„ are one-electron four-index 
integrals of the density-density overlap type. In the most general 
case and without accounting for the O3 symmetry of the AOs, 
the number of different integrals is of the order of Mln4/24. 
Consequently, there are at most a few hundred two-index integrals 
and a few 104 four-index integrals, which can all be stored in the 
fast memory. 

After insertion of eq 14-18 into eq 2, the integrated squared 
"chemical difference density" / becomes 

/ = j Ap2 dr3 = 

V0 - 2 E hf)UfkUfkWf + E gf^Uf.Uf.UlAWfWf 
Kijk AijBmnkl 

(19) 

This expression is similar to the quantum chemical multico-
nfiguration energy expression, where the U matrix corresponds 
to the LCAO-MO vectors and the W vector corresponds to the 
CI coefficients. We now introduce the transformed two- and 
four-index integrals 

Hfj = 2Zhpt,Ufj (20) 
ij 

GfjU = E gfaVtiUfrftA (2D 
ijmn 

In the following we use the abbreviations 

HKK = HK 

/?A B _ rAB 
UKKLL ~ JKL 

This yields 

I=V0- 2ZHfWf + E WfJffWf 
Ak AkBl 

(20a) 

(21a) 

(22) 

This expression has to be minimized with respect to variations 
of the orthogonal matrices Uf) and the natural occupation numbers 
Wfc. The Wf are subject to the aforementioned constraints of 
charge conservation (Qy) for individual atomic shells, for individual 
atoms, or for collections of atoms (e.g., for the whole unit cell). 
All these constraints are of the general form 

Ewixi = g „ p= i, 2, 
A* 

(23) 

where the XA,, are certain constants (compare eq 10-12). If the 
Lagrangean multipliers corresponding to these side conditions are 
denoted by e„ then the constrained variation with respect to the 
Wf leads to the following system of linear equations for the Wf 
and e„: 

(24) 

The second line of eq 24 is identical with eq 23. 
The variation of the Ufk has to be performed under the con­

straint of unitarity. This is most easily achieved if we express the 
UA by eq 6a. With the abbreviation 

Fh = HfJ-ILGtJf1Wf 

the variation with respect to the Xf) in eq 6a leads to 

Fh = O 

(25) 

(26) 

The upper set of the equation system (24) may also be expressed 
as 

Ff1 = EAfc, (27) 

We note the similarity with the quantum mechanical Har­
tree-Fock equations. Here too, one has to be aware of the so-called 
Hartree-Fock instability. This means that the smallest value of 
the integral / of a symmetrical molecule may correspond to in-

equivalent orientations and occupations of the p AOs on equivalent 
atoms so that the promolecule of the oriented atoms would not 
reproduce the full symmetry of the molecule. Instead of deter­
mining such a "symmetry-unrestricted Hartree-Fock" solution, 
one can also determine a fully symmetric promolecule by a 
"restricted Hartree-Fock" type procedure. 

4. Iterative Method for the Determination of Uf) and Wf. The 
simplest way of minimizing / (eq 19 or 22) is by the Gauss-
Newton or Newton-Raphson techniques.50 We expand Ap in I 
(eq 19) in a Taylor series up to first or second order, respectively, 
in the Xf) and Wf around the approximate optimal values ^Xf) and 
oWf, for which / takes the value </; 

UA = exp(XA) = 0U
A(\ + AXA + (AXA)2/2) (28) 

A* d Wf AijdXf) 

d\i i a y 
E . . . , " . . „ ^Xf)AWf + + E . . . M . „ j a AWfAWf + 

AyB/ dXf)3Wf 2 AkBl dWfdWf 

1 d2
0I 

2 AijBmn dXf)dX%,„ 

Minimizing / yields improved values: 

iWf = aWf + AWf 

\Xn\n = &X%m + AA^B (30) 

where the improvements are obtained from the equation 

(31) 

The constraints (4b), (4c), and (23) have been incorporated ex­
plicitly. The expressions for the first and second derivatives are 
given by 

Iw: d0l/8WA = -20F
A

k (32a) 

Ix: d0I/8Xf) = -A0Ff)(Wf -Wf-) (32b) 

W d2oI/dWfdWf = 20/
A,B (32c) 

Ixw: d\I/dXf)dWf = A0G^f(Wf - Wf) - 40Ff)(8f - hff) 
(32d) 

Ijai. d2
0I/dXf)dXl„ = 80G

A
m

B„(»f - Wf)(W^ -Wl)-

2\5f»[Ffn(Wf +Wl)- Lfn] - bf*[Ffn(Wf +Wl)- Lfn] + 

Sf„B[Ffm(Wf +Wf)- Lfn] - hf?\F%(Wf +Wf)- Lfn]] 
(32e) 

where we have used the symbols F (eq 25), J and G (eq 21, 21a), 
and 

Lf. = {Wf + Wf)Hf) - t(WfG%t + WfGA,A)Wf (33) 
k 

The total expressions listed correspond to a Newton-Raphson 
procedure. Deletion of the terms in the braces ({)) yields the 
Newton-Gauss procedure. The former converges faster close to 
the minimum. But the latter always yields a direction along which 
/ decreases initially. By contrast the former can converge on a 
saddle point or a maximum. This happens when the Hessian (L)2I) 
has negative eigenvalues e,-. 

For special symmetries the Hessian may have zero eigenvalues 
corresponding to redundant parameters. To treat these cases 
correctly, we diagonalize the Hessian: 

D2I\c,) = e(|c) (34) 

and represent eq 31 in the basis of the eigenvectors \c,)\ 

(c,\DI) + e,<c,|A> = 0 (35) 

file:///Xn/n


J, Am. Chem. Soc. 1989, 111, 6933-6941 6933 

The desired correction vector |A) for the parameters Wf and X^1n 

is then given by 

\A)=-E\c,)(cADI)/e, (36) 

where the /' are restricted to those et that are larger than some 
small positive constant 5. This is done because if e,- « 0, this \q) 
represents a redundant linear combination of parameters and 
should be suppressed. 

A program has been prepared for the analysis of theoretical 
molecular densities (where the thermal smearing need not be 
accounted for). The procedure consists of the following steps: 1. 
Read the molecular density, the atomic coordinates, the atomic 
SCF orbitals, and starting values for Wf and L*„. 2. Calculate 
the basic integrals (eq 16-18). 3. Perform the two- and four-index 
transformation (eq 20 and 21). 4. Calculate the Fock operators 
F and L (eq 25 and 33). 5. Construct the DI vector and the D2I 
matrix (eq 32). 6. Diagonalize the Hessian (eq 34), determine 

1. Introduction 
X-ray diffraction of crystals yields information on electron 

densities. There exists an interest in deducing chemical infor­
mation from such densities without recourse to other information. 
A natural approach is first to determine atomic densities and then 
to subtract them from the molecular density to obtain interpretable 
difference densities (DDs). 

In the preceding paper1 the concept of the chemical deformation 
density (CDD) of a molecule was introduced as the difference 
between the molecular density pmoi and the superposition of 
uniquely defined atomic reference densities pa, representing ap­
propriately positioned and oriented unperturbed ground states 
or near ground-state atoms in a molecule. A mathematical 
definition was formulated, and a computational algorithm was 
given for the quantitative determination of the orientation pa­
rameters of multipolar atomic ground-state densities pal and, hence, 
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improves values of Wf and U\n (eq 30 and 36), and calculate the 
integrated squared residual density / (eq 22). 7. Repeat steps 
3-6 until self-consistency is reached. 

The result is a promolecule uniquely defined as the density 
superposition of free atoms in their ground state which are op­
timally positioned and oriented in the molecule. This definition 
is in our opinion better suited for the purpose of analyzing chemical 
bonds than the choice of spherically averaged atoms. 
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of the CDD, Ap = Pn^ - pat. While in conventional X-ray analysis, 
only the positions of the atoms of a molecule or unit cell are refined 
by using least-difference-squares techniques, the proposed method1 

extended this approach to the atomic orientations, i.e., the inte­
grated squared difference density 

IDD = J"d/-3 (Ap)2 

is also minimized with respect to the orientation tensors of de­
generate atomic ground states. 

An essential element of this approach is that in addition to the 
position, the orientation of a degenerate ground state (or possibly 
near-degenerate ground-state manifold) is the only adaptation 
of the atom to its environment. Energy changing hybridizations 
or other promotions are excluded. This limitation eliminates the 
arbitrariness introduced by other ways of "preparing" the atoms, 
and it makes a consistent interpretation possible. 

In the present paper this method is successfully tested by ap­
plying it to the theoretically calculated density of several small 
molecules containing atoms that when free, have degenerate 
groundstates (C, O, F), namely, F2, HF, H2O, H2O2,

 1CH2,3CH2, 
CH4, and, in addition, LiH. The examination of their theoretical 
chemical deformation densities leads to a number of conclusions 
regarding the meaning and utility of the "atomic orientations" 
and the "genuine chemical deformations" deduced from the 

(1) Schwarz, W. H. E.; Ruedenberg, K.; Mensching, L. J. Am. Chem. 
Soc, preceding paper in this issue. 
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Abstract: The method described in the preceding paper1 for deducing nonspherical, multipolar, oriented atomic ground-state 
reference density contributions to molecular densities is applied to the molecules F2, HF, H2O, H2O2,

 1CH2,3CH2, CH4, and 
LiH. From these reference densities the chemical deformation densities (CDDs), which were also introduced in the preceding 
paper, are determined. They offer a consistent, interpretable picture for bond, lone-pair density, and charge-transfer deformations 
in these molecules. The CDDs of oxygen and fluorine compounds do not exhibit the exceptional peculiarities that appear when 
conventional difference densities, based on spherically averaged atomic reference densities, are examined. The eigenvalues 
of the orientation tensors are compared with the theoretical Mulliken populations. 


